ZUR SAUERSTOFFREDUKTION AN n-GaAs-ELEKTRODEN

Roland SCHLESINGER und Peter Johannes JANIETZ

Sektion Chemie der Humboldt-Universität zu Berlin, Bereich für physikalische und theoretische Chemie, 1080 Berlin, D.D.R.

> Eingegangen am 10. April 1989 Angenommen am 13. Juli 1989

Die elektrochemische Reduktion von Sauerstoff an n-GaAs(100) in sauren und alkalischen Elektrolyten wird mittels zyklischer Voltammetrie untersucht. Es wird eine ungewöhnliche Abhängigkeit des Reduktionspeaks von der Umdrehungsgeschwindigkeit der Elektrode in $0,5M-H_2SO_4$ gefunden. Die Gestalt der Zyklovoltammogramme wird qualitativ auf der Basis eines Ladungstransfer-Modells erklärt. Es wird postuliert, daß der Elektronentransfer durch sauerstoffadsorptionsinduzierte, nahe der Leitungsbandkante lokalisierte Oberflächenzustände vermittelt wird. Es werden Argumente dafür geliefert, daß ein in der Literatur beschriebener Reduktionspeak in der potentiodynamischen Dunkelstromkurve für n-GaAs/ $0,5M-H_2SO_4$ nicht der Reduktion von Arsenoxidationsprodukten, sondern der Reduktion von im Elektrolyten gelösten Sauerstoff zuzuordnen ist.

Zahlreiche Redoxprozesse in wäßrigen Elektrolyten, die für Metallelektroden als weitgehend geklärt gelten, werden im Fall von Halbleiterelektroden nach wie vor kontrovers in der Literatur diskutiert. Dies gilt insbesondere für die Sauerstoffreduktion (siehe z.B. Ref.¹ und die darin zitierte Literatur).

Im Fall von n-GaAs wurde von Pettinger et al.² folgender Mechanismus vorgeschlagen:

$$O_2 + e \rightarrow O_2^-$$
 (A)

 $O_2^- + H_2O + e \rightarrow HO_2^- + OH^-$ (vermittelt durch Oberflächenzustände) (B)

$$O_2^- + H_2O \rightarrow HO_2^- + OH^- + h^+$$
 (C)

Li und Mitarbeiter³ diskutierten für p-GaAs in sauren Elektrolyten einen davon abweichenden Mechanismus:

$$O_2 + H^+ + e \rightarrow HO_2^{\bullet}$$
 (D)

$$HO_2^{\bullet} + H^+ + e \rightarrow H_2O_2 \qquad (E)$$

$$HO_2^{\bullet} + H^+ \rightarrow H_2O_2 + h^+$$
 (thermisch aktiviert) (F)

Collect. Czech. Chem. Commun. (Vol. 55) (1990)

930

Sauerstoffreduktion an n-GaAs-Elektroden

Potentiodynamische Dunkelstrommessungen in schwefelsaurer Lösung ergaben einen Reduktionspeak nahe -0.5 V (vs SCE)^{4.5}. Allongue und Cachet⁴ sowie Herrnberger et al.⁵ führten die Möglichkeit der Reduktion von Arsenoxidationsprodukten zur Erklärung an.

In der vorliegenden Arbeit werden kathodische Reduktionsprozesse an n-GaAs in wäßrigen Elektrolyten diskutiert, die mittels zyklischer Voltammetrie untersucht wurden. Es konnte im Fall von $0.5 \text{M}-\text{H}_2\text{SO}_4$ als Elektrolyt ein Reduktionspeak zwischen -0.4 V und -0.6 V (vs SCE) beobachtet werden, dessen Ausprägung stark von der Vorbehandlung der Elektrode abhängt und der durch sorgfältige Spülung des Elektrolyten mit von Sauerstoff befreitem Stickstoff eliminiert werden kann. Es wird ein Modell vorgeschlagen, wonach gelöster Sauerstoff unter Beteiligung von adsorptionsinduzierten Oberflächenzuständen reduziert wird.

EXPERIMENTELLER TEIL

Es wurden (100)-orientierte, Te-dotierte n-GaAs-Einkristalle ($N_D = 3-7.10^{17}$ cm⁻³) verwendet. Ohmsche Rückseitenkontakte wurden durch Aufdampfen einer Au-Ge-Legierung hergestellt. 0,25–0,4 cm² große Halbleiterproben wurden auf rotationsfähigen Teflonhalterungen fixiert. Die Elektroden wurden überwiegend vor den Messungen 25 Sekunden in einem Gemisch aus NH₃ (25% ig) + H₂O₂(30% ig) + H₂O im Volumenverhältnis 3 : 1 : 15 geätzt. Die Chemikalien hatten MOS-Selectipur-Reinheitsgrad (Merck). Zur Entfernung von gelöstem Sauerstoff wurde mindestens 25 Minuten mit sorgfältig gereinigtem Stickstoff gespült.

Die Experimente erfolgten unter Ausschluß von Licht. Die Potentialvorschubgeschwindigkeit betrug bei den potentiodynamischen Messungen, wenn nicht anders angemerkt, 5 mV s⁻¹. Kapazitätsmessungen erfolgten mit der Impedanzmeßbrücke BM 484 bei einer Frequenz von 1,6 kHz. Für einige Experimente wurden GaAs-Proben in einem Gemisch aus Ethandiol + Weinsäurelösung (3% ig) im Verhältnis 2:1 galvanostatisch bei einer Stromdichte von 1 mA. . cm⁻² bis zu einer Endspannung von 5 V (in Zweielektrodenmeßtechnik) unter Belichtung oxidiert. Alle in dieser Arbeit angegebenen Potentialwerte beziehen sich auf die gesättigte Kalomelelektrode.

ERGEBNISSE

Abbildung 1 zeigt den Einfluß der Elektrodenvorbehandlung auf die Strom-Spannungs-Charakteristik einer ruhenden n-GaAs-Elektrode in luftgesättigter 0,5M--H₂SO₄. Nach Ätzen der Halbleiterprobe beobachten wir in der Hin- und Rückkurve des Zyklovoltammogramms einen Reduktionspeak mit dem Maximum bei -0,48bis -0,52 V, d.h. 0,54 bis 0,59 V positiver als das durch Kapazitätsmessung bestimmte Flachbandpotential ($U_{Fb} = -1,06$ V). Ein spezifischer Anioneneffekt konnte ausgeschlossen werden, da der Reduktionspeak auch in 0,5M-HCl und 0,5M-HClO₄ auftritt.

In luftgesättigter 0,1M-KOH ist der Reduktionspeak bei Verwendung des $NH_3 + H_2O_2 + H_2O - Ätzsystems weniger ausgeprägt; die resultierende Stufe befindet$

sich 0,61 bis 0,66 V positiver als das Flachbandpotential $U_{\rm Fb} = -1,81$ V. Bemerkenswert sind die wesentlich größeren Stromdichten im Fall des alkalischen Elektrolyten (siehe Abb. 4).

Wir beobachten mit zunehmender Zyklenzahl eine stetige Abnahme des Reduktionspeaks. Nach erneutem Ätzen war der erste Zyklus reproduzierbar. Dies ist eine wesentliche Voraussetzung für zuverlässige Schlußfolgerungen bezüglich der Kinetik des Reduktionsprozesses.

In Abbildung 2 is ersichtlich, daß sich der Peak bei Erhöhung der Potentialvorschubgeschwindigkeit (v) um den Faktor 10 um annähernd -60 mV verschiebt. Zwischen der Peakhöhe und \sqrt{v} bzw. v war keine Proportionalität feststellbar. Die Analyse der im Hinsweep geflossenen Ladung ergab nach Korrektur um den Betrag, der in einer von Sauerstoff befreiten Lösung gemessen wurde (die im letzteren Fall fließenden Ströme sind mindestens um das 100fache größer als die mit der Umladung der Raumladungszone verbundenen kapazitiven Ströme):

4,3.
$$10^{-4}$$
 As cm⁻² für $v = 5$ mV s⁻¹
2,7. 10^{-4} As cm⁻² für $v = 50$ mV s⁻¹.

Einfluß der Elektrodenvorbehandlung auf die Strom-Spannungskurve von n-GaAs/0,5M- H_2SO_4 (luftgesättigt). Erster Zyklus mit kathodischer Potentialänderung beginnend. 1 25 s in NH₃ + H₂O₂ + H₂O (3:1:15) geätzt; 2 30 s in H₂SO₄ + H₂O₂ + H₂O (6:1:1) geätzt; 3 ungeätzte Probe Авв. 2

Abhängigkeit des Reduktionspeaks für n-GaAs/0,5M-H₂SO₄ (luftgesättigt) von der Potentialvorschubgeschwindigkeit v (mV. s⁻¹): 1 5; 2 50. Zusätzlich sind die entsprechenden potentiodynamischen Kurven nach N₂-Spülung des Elektrolyten eingezeichnet worden

Collect. Czech. Chem. Commun. (Vol. 55) (1990)

Dies deutet darauf hin, daß die Diffusion von Lösungsspezies - obgleich nicht geschwindigkeitsbestimmend - im Reduktionsprozeß von Bedeutung ist.

Abbildung 3 zeigt den Einfluß der Stickstoffspülung bzw. Sauerstoffsättigung der sauren Lösung. Der Reduktionspeak wird bei sorgfältiger Stickstoffspülung völlig unterdrückt, während er durch Sauerstoffsättigung auf maximal das 4–5fache des Wertes der luftgesättigten Lösung ansteigt.

Durch N₂-Spülung gelingt nicht die vollständige Eliminierung der in luftgesättigter alkalischer Lösung beobachteten Stufe (Abb. 4). Durch Sauerstoffsättigung steigt der Strom auf das 3-4fache an. Es liegt daher nahe, daß der beobachtete Peak der Reduktion von gelöstem O_2 zuzuordnen ist.

Tatsächlich konnte Wasserstoffperoxid durch Nachweisreaktionen mit Titanylsulfat⁶ als Reduktionsprodukt identifiziert werden. Darüber hinaus konnte auch die für Peroxid charakteristische Luminol-Chemilumineszenz⁶ bei der ex-situ-Analyse der Elektrolytlösung nach mehrmaligem Zyklisieren nachgewiesen werden. Die chemische Stabilität des an der n-GaAs-Oberfläche in schwefelsaurer Lösung elektrochemisch gebildeten H₂O₂ ist angesichts der Tatsache, daß H₂SO₄ + H₂O₂ + H₂O – Mischungen häufig angewandte Ätzsysteme sind^{7,8}, überraschend hoch.

In Abbildung 5 ist der Einfluß der Umdrehungsgeschwindigkeit (f) der Elektrode auf den Reduktionsprozeß in $0,5M-H_2SO_4$ dargestellt. Überraschenderweise wird mit steigendem f eine Abnahme des Peaks beobachtet, während andererseits die Wasserstoffentwicklung beschleunigt wird.

Авв. 4

Einfluß der O₂-Konzentration im Elektrolyten auf den *j*-*U*-Verlauf von n-GaAs/0,5M--H₂SO₄. Elektrolyt: 1 25 min mit N₂ gespült; 2 luftgesättigt; 3 mit O₂ gesättigt Einfluß der O_2 -Konzentration im Elektrolyten auf den *j*-U-Verlauf von n-GaAs/0,1M--KOH. Elektrolyt: 1 25 min mit N_2 gespült; 2 luftgesättigt; 3 mit O_2 gesättigt Bei 0,1M-KOH wurde das an sich zu erwartende elektrochemische Verhalten gefunden; der Strom nimmt mit f zu $(j \propto \sqrt{f}$ ließ sich nicht reproduzieren).

Es konnte ferner gezeigt werden, daß der Peak mit zunehmender Verzögerungzeit zwischen dem Einsetzen der Elektrode in den sauren Elektrolyten und dem Beginn der Potentialänderung abklingt, und zwar in stärkerem Maße bei während der Verzögerungszeit rotierender Elektrode.

Um die Literaturvorstellungen von der Reduktion von Arsenoxidationsprodukten^{4,5} zu prüfen, wurde der Einfluß des Zusatzes von aufgelöstem GaAs zu luftgesättigter H_2SO_4 untersucht (Abb. 6). Zwar beobachten wir eine geringe Erhöhung des Reduktionspeaks in der Hinkurve, aber in der zweiten Hälfte des Zyklus nimmt der Strom im Gegensatz zur reinen H_2SO_4 monoton ab. Dies ist auch bei Zusatz von As₂O₃ der Fall⁵. Einige GaAs-Proben wurden nach dem Vermessen in 0,5M-H₂SO₄ extern im AGW-Elektrolyten anodisch oxidiert⁹. Nach dem Eintauchen der oxidierten Elektrode in 0,5M-H₂SO₄ werden lösliche Oxidationsprodukte in Elektrodennähe gebildet (siehe z.B. Ref.¹⁰). Dieses erhöhte Angebot führt jedoch nicht zur Erhöhung der Peakstromdichte (Abb. 6).

Авв. 6

Авв. 5

Abhängigkeit der j-U-Kurve für n-GaAs/ 0,5M-H₂SO₄ (luftgesättigt) von der Umdrehungsgeschwindigkeit der Elektrode. f(Hz): 1 0; 2 20; 3 200 Einfluß von löslichen Oxidationsprodukten des GaAs auf den j-U-Verlauf von n-GaAs/ 0,5M-H₂SO₄ (luftgesättigt). 1 Unmodifizierter Elektrolyt; 2 Elektrolyt ist 5 . 10^{-4} molar an Ga³⁺ und AsO₂⁻; 3 Die (extern) anodisch oxidierte Halbleiterprobe wurde 30 s vor Zyklusbeginn mit dem unmodifizierten Elektrolyten in Kontakt gebracht

Collect. Czech. Chem. Commun. (Vol. 55) (1990)

934

DISKUSSION

Wir haben gezeigt, daß in unter Ausschluß von Licht aufgenommenen Zyklovoltammogrammen von n-GaAs (100)-Elektroden in luftgesättigten Lösungen annähernd 0,6 V positiver als das Flachbandpotential ein Reduktionspeak auftritt, vorausgesetzt, die Elektrode wurde durch Ätzen aktiviert (Abb. 1, 4).

Dieser Peak wird von uns hauptsächlich der Reduktion von O_2 zugeordnet (Abb. 3, 4), während wir der von Allongue und Cachet⁴ und Herrnberger et al.⁵. postulierten Reduktion von Oxidationsprodukten untergeordnete Bedeutung beimessen (Abb. 6). Der Ätzprozeß führt offenbar durch den Abbau oxidischer Deckschichten zur Erhöhung der O₂-Adsorptionsfähigkeit der Elektrode. Während des Reduktionsprozesses geht die Aktivität der Halbleiteroberfläche schrittweise verloren, da die Oberfläche mit Produkten des O₂-Reduktionsprozesses abgesättigt wird.

Wir haben prinzipiell mit zwei definierten O_2 -Konzentrationen¹¹ gearbeitet (luftgesättigter Elektrolyt: $[O_2] = 0,26 \cdot 10^{-3} \text{ mol } 1^{-1}, O_2$ -gesättigter Elektrolyt: $[O_2] =$ $= 1,25 \cdot 10^{-3} \text{ mol } 1^{-1}$) und finden bei Verwendung des sauren Elektrolyten gemäß der Zunahme der O_2 -Konzentration eine entsprechende Erhöhung der Peakstromdichte. Dies ist nicht unmittelbar eine Bestätigung der Gültigkeit des klassischen Ladungstransfermodells der Halbleiter-Elektrolyt-Grenzfläche^{12,13}. Wendet man dieses Modell der fluktuierenden Energieniveaus auf die Reduktion physisorbierten O_2 an, folgt:

$$j \propto [\mathbf{O}_2]_{\mathrm{ph}} \cdot n_\mathrm{s}$$
, (1)

wobei $[O_2]_{ph}$ und n_s die Oberflächenkonzentration von O_2 bzw. die der Leitungsbandelektronen bedeuten¹⁴. Es besteht jedoch nicht notwendig eine Proportionalität zwischen $[O_2]_{ph}$ und $[O_2]^{15}$.

Gemäß der klassischen Elektronentheorie der Katalyse (siehe Ref.¹⁶ und darin zitierte Literatur) nehmen wir an, daß durch die adsorbierten O_2 -Moleküle in der Bandlücke lokalisierte Oberflächenzustände gebildet werden (vgl. für Co₃O₄-Elektroden Ref.¹⁶ und für n-TiO₂ Ref.¹⁷). Theoretische Berechnungen von Goddard et al.¹⁸ zur Adsorption von Sauerstoff an der GaAs(110)-Oberfläche unterstützen diese Annahme und deuten darauf hin, daß die Wechselwirkung von Arsen-dangling bonds mit leeren Sauerstofforbitalen dominiert.

Wir postulieren, daß der Ladungstransfer an der Halbleiter-Elektrolyt-Grenzfläche durch die mit leeren Niveaus der oxidierten Spezies (d.h. O_2) überlappenden Oberflächenzustände vermittelt wird. Oberflächenzustände werden in der Literatur häufig berücksichtigt, wenn experimentelle Ergebnisse inkonsistent mit dem direkten Elektronentransfer zwischen den Halbleiterbändern und elektronischen Zuständen im Elektrolyten sind (zwecks eines Überblicks über die ältere Literatur vergl. Refn^{19,20}). Vandermolen et al.²¹ interpretierten das Phänomen der Stromsättigung mit zunehmender Konzentration der oxidierten Komponente eines Redoxsystems ebenfalls auf der Grundlage eines Zweischrittmechanismus und leiteten eine auf dem Quasistationäritätsprinzip und den Shockley-Read-Beziehungen basierende kinetische Beziehung ab, die jedoch im Rahmen der Interpretation zyklovoltammetrischer Experimente nicht anwendbar ist.

Solch ein Mechanismus ist seither auf die verschiedensten Redoxprozesse an einer Reihe von Halbleiterelektroden angewandt worden ($\text{TiO}_2^{12,17,21-23}$; $\text{SrTiO}_3^{21,24}$, α -Fe₂O₃²⁵, WO₃²⁶). Interessanterweise sind darunter drei Arbeiten, die der Untersuchung der Reduktion von O₂ gewidmet sind^{12,17,23}.

Leitungsbandelektronen werden von unbesetzten Oberflächenzuständen inelastisch mit einer Geschwindigkeitskonstanten k_1 eingefangen und von dort mit einer Geschwindigkeitskonstanten k_2 in (leere) Niveaus der oxidierten Spezies (O₂) übertragen. Bekanntlich gilt:

$$k_1 = \langle v \rangle \, \sigma \,, \tag{2}$$

wobei $\langle v \rangle$ die mittlere thermische Geschwindigkeit für die Boltzmannverteilung der Leitungsbandelektronen und σ der Einfangquerschnitt der Oberflächenzustände ist²⁷. Die Konstante k_2 hängt vom Überlappungsgrad der Oberflächenzustände mit den Niveaus der oxidierten Komponente ab.

Wir postulieren einen dritten Prozeß mit der Geschwindigkeitskonstanten k_3 , der mit dem von der Verfügbarkeit unbesetzter Oberflächenzustände abhängigen ersten Schritt konkurriert, und zwar den Transport von zur Elektronendonation in die adsorptionsinduzierten Oberflächenzustände befähigten Elektrolytspezies an die GaAs-Oberfläche. Wir schließen nicht aus, daß diese Konkurrenzreaktion die Elektronenreemission in unbesetzte Oberflächenzustände durch im Verlaufe des Reduktionsprozesses gebildete reduzierte Spezies ist. Dieser dritte Prozeß würde sowohl die ungewöhnliche Abhängigkeit des Reduktionsstromes von der Umdrehungsgeschwindigkeit der Elektrode als auch den experimentellen Befund erklären, daß der Peak zunehmend abgeschwächt wird, je schneller die Elektrode vor dem Zyklusbeginn rotiert.

Wilson²⁸ konnte für den Fall der Reduktion von Oberflächenzuständen, die zuvor durch Löchereinfang infolge Belichtung der TiO₂-Oberfläche entleert wurden, eine befriedigende Übereinstimmung zwischen theoretischer und experimenteller potentiodynamischer *j*-U-Kurve erreichen. Wird der Elektronentransfer zwischen Oberflächenzuständen und Redoxspezies vernachlässigt, ergibt sich unter der Annahme, daß die Leitungsbandelektronen an der Oberfläche mit denen im Halbleiterinneren im thermischen Gleichgewicht stehen und daß der Potentialabfall in der Helmholtzschicht trotz der Umladung von Oberflächenzuständen vernachlässigbar ist, folgende Beziehung²⁸:

$$U_{\rm P} - U_{\rm Fb} = kT/q \, . \ln\left(-kT/q \, . \, N_{\rm D}\sigma\langle v \rangle/v\right). \tag{3}$$

Collect. Czech. Chem. Commun. (Vol. 55) (1990)

Diese Gleichung erlaubt trotz der besagten Näherungen die direkte Deutung des experimentellen Befundes (Abb. 2) über die Abhängigkeit des Peakpotentials (U_P) von v. Anhand von Abbildung 2 wurde nach Gleichung (3) mit $\langle v \rangle \approx 4.10^7$ cm. . s⁻¹ (für GaAs mit einer effektiven Elektronenmasse von 0,063 m_e (Ref.²⁹) berechnet) und $N_D = 5.10^{17}$ cm⁻³ ein Einfangquerschnitt von $1,1.10^{-16}$ cm² ermittelt. Dies ist ein plausibler Wert²⁷, da die durch die Adsorption von O₂ induzierten Oberflächenzustände als neutral angenommen werden können.

Im folgenden wird die Form des Zyklovoltammogramms für den Fall des sauren Elektrolyten diskutiert. Zu Beginn der kathodischen Potentialänderung seien die adsorptionsinduzierten Oberflächenzustände weitgehend unbesetzt. Wenn die Besetzung durch das Ferminiveau des Halbleiters gegeben ist, was bei Anwesenheit eines Redoxsystems nicht notwendig der Fall ist^{22,30}, sollten die Oberflächenzustände nahe der Leitungsbandkante lokalisiert sein. In der Abbildung 7 ist diese Situation in einem Energieniveauschema dargestellt, daß auch gemäß den Vorstellungen von Pettinger et al.² und Li et al.³ einige bei der O₂-Reduktion beteiligte Redoxniveaus berücksichtigt.

Авв. 7

Energieniveauschema der n-Ga As Elektrolyt-Grenzfläche bei pH 0,3 und pH 13; U = -0,2 bzw.-0,9 V (vs SCE). Redoxpotentiale wurden Ref.³⁵ entnommen. Die Umordnungsenergie des O₂/O₂⁻-Systems wurde willkürlich 0,5 eV gesetzt Die kathodische Stromdichte (j) ist gegeben durch²⁸:

$$j = -q \cdot k_1 \cdot N \cdot n_s, \qquad (4)$$

wobei N die Dichte unbesetzter, adsorptionsinduzierter, diskreter Oberflächenzustände und q die Elementarladung sind.

Wenn im Verlauf der kathodischen Potentialänderung durch Einfang von Leitungsbandelektronen die Dichte der unbesetzten Oberflächenzustände sinkt, während die Elektronendichte an der Oberfläche mit abnehmender Bandverbiegung zunimmt, erscheint die Ausprägung eines Reduktionspeaks plausibel. Natürlich darf dann der Prozeß des Elektronentransfers aus besetzten Oberflächenzuständen zur oxidierten Spezies nicht dominant sein.

Durch Stromfluß wird ein Nichtgleichgewichtszustand erzeugt. Aber das Konzept eines horizontalen, bezüglich des Halbleiterinneren fixierten Majoritätsträger-Quasiferminiveaus³¹ sollte in erster Näherung gültig sein, so daß nach einer kathodischen Potentialänderung um 600 mV die Oberflächenzustände weitgehend unter das Elektronen-Quasiferminiveau abgesunken sind (Abb. 7). Das bedeutet, die Oberflächenzustände sind nun hauptsächlich besetzt³¹. Nach Umkehr der Potentialänderungsrichtung sinkt zunächst n_s , und das Elektronen-Ferminiveau wandert an der Oberfläche abwärts. Dabei werden besetzte Oberflächenzustände geleert, und der Einfang von Elektronen aus dem Leitungsband wird ermöglicht. Sobald das Oberflächenferminiveau genügend abgesunken ist, nimmt der Reduktionsstrom nur noch ab (n_s und N nehmen gleichzeitig ab).

Der in der Rückkurve auftretende Reduktionspeak ist im Rahmen der klassischen Vorstellungen über die zyklische Voltammetrie an Metallelektroden unverständlich. Selbst für einen irreversiblen Prozeß ist im Rücksweep eine stetige Abnahme des Stromes anzunehmen, da sich die Diffusionsschicht ständig weiter ins Lösungsinnere ausdehnt.

Angesichts des unterschiedlichen Verhaltens der n-GaAs-Elektroden in H_2SO_4 und KOH schlußfolgern wir, daß der von Pettinger et al.² vorgeschlagene Mechanismus der elektrochemischen O₂-Reduktion unseren experimentellen Ergebnissen besser entspricht als der von Li et al.³ postulierte. Das Redoxpotential der Reaktion (*D*) hat die gleiche pH-Abhängigkeit wie das Flachbandpotential von GaAs, so daß der energetische Abstand zwischen Leitungsbandkante und Redoxniveau O₂/HO² unabhängig vom pH ist (Abb. 7). Deshalb sind, falls Reaktion (*D*) geschwindigkeitsbestimmend ist, keine wesentlichen Unterschiede zwischen der O₂-Reduktion in H₂SO₄ und KOH zu erwarten. Andererseits ist das Redoxpotential der Reaktion (*A*) nicht pH-abhängig, weshalb sich die Überlappung zwischen Oberflächenzuständen und leeren O₂-Niveaus mit zunehmendem pH verstärkt (Abb. 7). Tatsächlich sind die Stromdichten im Fall des alkalischen Elektrolyten bedeutend höher (Abb. 4). Es sei angemerkt, daß sich das von Li et al.³ postulierte Radikal HO₂ auch in der chemischen Reaktion (G) aus dem O₂⁻-Ion bilden kann:

$$O_2^- + H_2O \rightarrow HO_2^{\bullet} + OH^-$$
. (G)

In Abbildung 7 ist ersichtlich, daß im Fall der 0,1M-KOH Elektronendonatoren praktisch keine Rolle spielen, während für 0,5M-H₂SO₄ eine gewisse Wahrscheinlichkeit besteht, daß Elektronen aus besetzten Redoxniveaus in leere Oberflächenzustände übertragen werden (k_3) . Dies verdeutlicht, warum der ungewöhnliche experimentelle Befund bezüglich der Elektrodenrotation nur im sauren Elektrolyten zu beobachten ist.

Die stufenartige potentiodynamische j-U-Kurve bei pH 13 (Abb. 4) kann eine Folge der Überlagerung der O₂-Reduktion durch den Prozeß der elektrochemischen Umwandlung einer Hydroxidschicht in eine Hydridschicht sein. Tatsächlich finden wir bei O₂-Abwesenheit im betrachteten Potentialgebiet einen geringen Reduktionsstrom. Ein solcher Prozeß wird häufig an Halbleiterelektroden diskutiert³²⁻³⁴.

Wir danken Frau A. Gille und Herrn A. Synowczyk für die Durchführung einiger Experimente und Herrn Dr. Brudel für anregende Diskussionen.

LITERATUR

- 1. Etcheberry A., Gautron J., Sculfurt J. L.: J. Electroanal. Chem. 247, 265 (1988).
- 2. Pettinger B., Schöppel H. R., Gerischer H.: Ber. Bunsenges. Phys. Chem. 80, 849 (1976).
- 3. Li J., Peat R., Peter L. M.: J. Electroanal. Chem. 200, 333 (1986).
- 4. Allongue P., Cachet H.: Solid State Commun. 55, 49 (1985).
- 5. Herrnberger H., Sourisseau R., Lorenz W.: J. Electroanal. Chem. 223, 215 (1987).
- 6. Jander G., Blasius E.: Lehrbuch der analytischen und präparativen anorganischen Chemie, S. 171, 439. Hirzel, Leipzig 1982.
- 7. Kohn E.: J. Electrochem. Soc. 127, 505 (1980).
- 8. MacFadyen D. N.: J. Electrochem. Soc. 130, 1934 (1983).
- 9. Sukale R., Janietz P., Landsberg R., Kaukel H.: Z. Phys. Chem. 266, 897 (1985).
- 10. Somogyi M.: Cryst. Res. Technol. 17, 1129 (1982).
- 11. Kolthoff I. M., Miller C. S.: J. Am. Chem. Soc. 63, 1013 (1941).
- 12. Tafalla D., Salvador P.: Ber. Bunsenges. Phys. Chem. 91, 475 (1987).
- 13. Morrison S. R.: Electrochemistry at Semiconductors and Oxidized Metal Electrodes, S. 104. Plenum, New York 1980.
- 14. Tafalla D., Salvador P.: J. Electroanal. Chem. 237, 225 (1987).
- 15. Ref.¹³, S. 194.
- 16. Savy M.: Electrochim. Acta 13, 1359 (1968).
- 17. Sprünken H.-R., Schumacher R., Schindler R. N.: Ber. Bunsenges. Phys. Chem. 84, 1040 (1980).
- Goddard W. A., Barton J. J., Redondo A., McGill T. C.: J. Vac. Sci. Technol. 15, 1274 (1978).
- 19. Wilson R. H.: CRC Crit. Rev. Solid State Mater. Sci. 10, 1 (1980).
- 20. Wilson R. H.: ACS Symp. Ser. 146, 103 (1981).

Collect. Czech. Chem. Commun. (Vol. 55) (1990)

- 21. Vandermolen J., Gomes W. P., Cardon F.: J. Electrochem. Soc. 127, 324 (1980).
- 22. Kobayashi K., Takata M., Okamoto S., Sukigara M.: J. Electroanal. Chem. 185, 47 (1985).
- 23. Salvador P., Gutiérrez C.: Chem. Phys. Lett. 86, 131 (1982).
- 24. Salvador P., Gutiérrez C.: J. Electrochem. Soc. 131, 326 (1984).
- 25. Iwanski P., Curran J. S., Gissler W., Memming R.: J. Electrochem. Soc. 128, 2128 (1981).
- 26. Desilvestro J., Grätzel M., Pajkossy T.: J. Electrochem. Soc. 133, 331 (1986).
- 27. Milnes A. G.: Deep Impurities in Semiconductors. Wiley, New York 1973.
- 28. Wilson R. H.: J. Electrochem. Soc. 127, 228 (1980).
- 29. Blakemore J. S.: J. Appl. Phys. 53, 520 (1982).
- 30. Gerischer H.: Surf. Sci. 18, 97 (1969).
- 31. Rhoderick E. H.: Metal-Semiconductor Contacts. Clarendon, Oxford 1978.
- 32. Gerischer H., Mattes I.: Z. Phys. Chem. NF 49, 112 (1966).
- 33. Madou M. J., Cardon F., Gomes W. P.: Ber. Bunsenges. Phys. Chem. 82, 819 (1978).
- 34. Schröder K., Memming R.: Ber. Bunsenges. Phys. Chem. 89, 385 (1985).
- 35. Sukhotina A. M.: Spravochnik po elektrokhimii, S. 139. Khimiya, Leningrad 1981.